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Introduction: Mathematical optimization

o Motivating Example
o Applications
o Convex optimization
o Least-squares(LS) and linear programming(LP) - Very common place
LS p
Convex
Optimization
Submodular
Optimization
(discrete)
General Opt.

Several of these are either
a) Composed and/or
b) Look similar to convex
optimization.
o Course goals and topics
@ Nonlinear optimization
o Brief history of convex optimization
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Mathematical optimization

(Mathematical) Optimization problem:-
minimize  fy(x)
X
subject to  fi(x) < b;, i=1,...,m.

x = (X1,...,Xp) : optimization variables
fi: R" - R, i=1,...,m: constraint functions
optimal solution x* has smallest value of f; among all vectors that satisfy the constraints
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions.

@ Sphere S, C R" centered at 0 is expressed as:
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions.

e Sphere S, C R" centered at 0 is expressed as: S = {u € R"|||ufl2 < r}
@ Ellipsoid £ C R" is expressed as:
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions.

@ Sphere S, C R" centered at 0 is expressed as: S = {u € R"|||ull2 < r}

o Ellipsoid £ C R" is expressed as:
E={veRMNAV+Db e S} ={veR|Av+Db|s < 1}. Here, Ac 1, thatis, Ais
an n x n (strictly) positive definite matrix.

@ The optimization problem will be:

minimize det(A™1)
[3117312~~-»ann7b1:-~bn]
subject to vIAV >0,V v#0

[Av+ bl <1, VWveCl
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Every Problem can be posed as an Optimization Problem (contd.)

@ Given a polygon P find the ellipsoid £ that is of smallest volume such that P C £.
@ Let vi,vy,...v, be the corners of the polygon P

@ The optimization problem will be:

minimize det(A™1)
[a11,a12...,@nn,b1,..bn)
subject to —vIAV>0, VY v#0

JAvi+bla <1, i€ {1.p}
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Every Problem can be posed as an Optimization Problem (contd.)

@ Given a polygon P find the ellipsoid £ that is of smallest volume such that P C £.
@ Let vi,vy,...v, be the corners of the polygon P
@ The optimization problem will be:

minimize det(A™1)
[a11,a12...,@nn,b1,..bn)
subject to —vIAV>0, VY v#0

JAvi+bla <1, i€ {1.p}

@ How would you pose an optimization problem to find the ellipsoid of largest volume that
fits inside C?
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So Again: Mathematical optimization

minimize  fy(x)
X
subject to  fi(x) < b;, i=1,...,m.

x = (X1,...,X,) : optimization variables
fi: R" - R, i=1,..,m: constraint functions
optimal solution x* has smallest value of f; among all vectors that satisfy the constraints
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Examples

portfolio optimization
@ variables: amounts invested in different assets
@ constraints: budget, max./min. investment per asset, minimum return

@ objective: overall risk or return variance
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Examples

device sizing in electronic circuits
@ variables: device widths and lengths
@ constraints: manufacturing limits, timing requirements, maximum area

@ objective: power consumption
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Examples

data fitting - machine learning
@ variables: model parameters
@ constraints: prior information, parameter limits

@ objective: measure of misfit or prediction error
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More Generally..

@ X represents some action such as
portfolio decisions to be made
» resources to be allocated

» schedule to be created

» vehicle/airline deflections

v

@ Constraints impose conditions on outcome based on

» performance requirements
» manufacturing process

@ Objective fy(x) should be desirably small
> total cost
> risk
> negative profit
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Solving optimization problems

general optimization problems
o very difficult to solve

@ methods involve some compromise, e.g., very long computation time, or not always
finding the solution

exceptions: certain problem classes can be solved efficiently and reliably
@ least-squares problems
@ linear programming problems

@ convex optimization problems
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L east-squares

minimize ||Ax — b||3
X

solving least-squares problems
e analytical solution: x* = (ATA) ~'ATb
@ reliable and efficient algorithms and software
@ computation time proportional to n?k (A € R**"); less if structured
@ a mature technology
using least-squares
o least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights, adding
regularization terms)
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Linear programming
mini)[nize c’x
subject to a,-sz by, i=1,...,m.
solving linear programs
@ no analytical formula for solution
@ reliable and efficient algorithms and software
@ computation time proportional to n?m if m > n; less with structure
@ a mature technology
using linear programs
@ not as easy to recognize as least-squares problems

@ a few standard tricks used to convert problems into linear programs (e.g., problems
involving l1- or lo-norms, piecewise-linear functions)
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Convex optimization problem
mini;nize fo(x)
subject to  fi(x) < b;, i=1,...,m.
@ objective and constraint functions are convex:

filax) + Bx2) < afi(x1) + Bfi(x)
fa+B8=1a>0 >0

f(x2)
f(x1)

X1 2 >

@ includes least-squares problems and linear programs as special cases
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Convex optimization problem

solving convex optimization problems
@ no analytical solution
@ reliable and efficient algorithms

@ computation time (roughly) proportional to {n®, n?m, F}, where F is cost of evaluating
fi's and their first and second derivative

@ almost a technology
using convex optimization
o often difficult to recognize
@ many tricks for transforming problems into convex form

@ surprisingly many problems can be solved via convex optimization
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Example: m lamps illuminating n(small, flat) patches
Lamp power pj

IHlumination
Ik

intensity |, at patch k depends linearly on lamp powers p;:
n
Ik = Z akipj, akj = rj 2max{costly;, 0}
=1

problem: Provided the fixed locations(ay;'s), achieve desired illumination lges with bounded
lamp powers

minimize  maxk=1,.n | log(lk) — log(ldes) |
Pj

subject to 0 < pj < pmax, j=1,...,m.
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Example: m lamps illuminating n(small, flat) patches
How to solve? Some approximate(suboptimal) 'solutions’:-

@ use uniform power: p; = p, vary p

@ use least-squares:

n
minimize Z ke — laes||
g k=1
round p; if pj > pmax or p; <0
© use weighted least-squares:

n m
minimize Z”Ik_ /des||g+zwj|lpj_pmax/2”%
P k=1 =1

iteratively adjust weights w; until 0 < p; < ppax
@ use linear programming:

minimize  maxk=1,.n | Ik — ldes |
subject to 0 < p; < pmax, j=1,...,m.
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Example: m lamps illuminating n(small, flat) patches

@ Use convex optimization: problem is equivalent to

minimize  fo(p) = maxk=1,.. nh(lc/ ldes)
pi

subject to 0 < p; < pmax, j=1,...,m.
with h(u) = max{u, 1/u}

h(u)

u

o f( is convex because maximum of convex functions is convex

@ exact solution obtained with effort ~ modest factor x least-squares effort
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).

e answer: with (1), still easy to solve; with (2), extremely difficult.
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).

e answer: with (1), still easy to solve; with (2), extremely difficult.

e moral: (untrained) intuition doesn’t always work; without the proper background very
easy problems can appear quite similar to very difficult problems.
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Course goals and topics

Goals

@ recognize/formulate problems (such as the illumination problem) as convex optimization

problem

@ develop code for problems of moderate size (1000 lamps, 5000 patches)

@ characterize optimal solution (optimal power distribution), give limits of performance, etc

Topics
e Convex sets, (Univariate) Functions, Optimization problem
Unconstrained Optimization: Analysis and Algorithms
Constrained Optimization: Analysis and Algorithms

°

°

@ Optimization Algorithms for Machine Learning

@ Discrete Optimization and Convexity (Eg: Submodular Minimization)
°

Other Examples and applications (MAP Inference on Graphical Models,
Majorization-Minimization for Non-convex problems)
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Grading and Audit

Grading
@ Quizzes and Assignments: 15%
Midsem: 25%
Endsem: 45%
Project: 15%

Audit requirement

@ Quizzes and Assignments and Project
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Nonlinear optimization

traditional techniques for general nonconvex problems involve comprom local optimization

methods (nonlinear programming)

e find a point that minimizes fy among feasible points near it

@ fast, can handle large problems

@ require initial guess

@ provide no information about distance to (global) optimum
global optimization methods

e find the (global) solution

@ worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): cal900-1970
algorithms

1947: simplex algorithm for linear programming (Dantzig)
1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)

late 1980s—now: polynomial-time interior-point methods for nonlinear convex optimization
(Nesterov & Nemirovski 1994)

applications
@ before 1990: mostly in operations research; few in engineering

@ since 1990: many new applications in engineering (control, signal processing,
communications, circuit design, . . .); new problem classes (semidefinite and second-order
cone programming, robust optimization)
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